您当前所在位置: 主页 > 量化交易 > 投资策略解密 >

>量化交易

DE CHUAN FUND

投资策略解密

量化交易让股市实现稳定收益

发布日期:2017年07月21

  中国股市创立以来的二十多年间,股市从公开的投融资平台,变成了许多股民一夜暴富的梦境。股市沦为赌场,散户们被当作“韭菜”。

  抛开牛市的狂热和股灾的哀嚎,我们需要静下心来想一想,是不是我们应该用更理性或是更科学的方法来对待股市投资这样一件严肃的事情呢?

  新兴的量化交易正在尝试提供一种理性投资的解决方案,通过大量的计算建立科学的盈利模型,为股民指引投资策略。最近alphago的成功更让我们不禁期待人工智能未来在投资领域的广阔应用空间。

  你还在看电脑面前盯盘看K线吗? 你还在为一次亏损寝食难安,为一次盈利欣喜若狂吗? 如果是,那也许你就OUT了。

  随着量化交易的蓬勃发展,一群统计狗、程序猿们已经开始使用计算机模型进行交易了,这些程序用不休眠,无人值守,24小时为你监控市场,产生利润。

  真有那么好的事吗?这不就是印钞机了吗? 请看下面分解。

 

  量化交易的获利来源于市场的无效性。如果市场服从随机游走,那大部分金融机构都可以关门了,还炒什么股啊。如果市场是有效的,那可能一个人一辈子都碰不到大牛市。持续不断的上涨的K线排列,概率该有多小啊。

  一个比较现实的假设是,市场在一定程度上是无效的,单纯的价格序列中存在大量的获利机会。

 

  量化交易是概率的游戏,一个交易策略是否能够盈利,关键看胜率和盈亏比。胜率是盈利次数占总交易数的百分比,盈亏比是平均盈利和平均亏损的倍数关系。

  这两者需要平衡,也很难兼顾。例如,玩彩票盈亏比很高,胜率很低,所以总体是亏损的。

 

  上图是个高盈亏比低胜率策略的策略。虽然盈利的交易很稀疏,但是却远离零点,亏损交易很密集,但紧贴零点,所以从右边的资金曲线上看,策略总体上是盈利的。

  所以,量化交易者会坦然的接受亏损,也会正确的看待盈利,它们只是交易系统的一个部分。

       下面用一个例子来说明一个交易策略的生产过程。某交易员发现,价格突破了一些关键点位后,会向着突破的方向持续发展。于是我们设计一个简单的突破策略:当价格突破近期高低点时,相应的做多或做空。

 

  接下来,就要进行进一步细化,做成一个模型。需要回答这么几个问题:

  时间框架是怎样的? 小时线、日线还是周线?

  如何定义高低点? 往回看几跟K线?

  进场后如何止损? 固定点位止损还是ATR(平均真实波动)止损?

 

  将上述问题具体化以后,就用程序代码将它们予以实现。国内比较普遍使用的是tradeblazer和multicharts。当然,技术实力较强的交易者也可以选择自行开发交易平台,用java,python等语言予以实现。

  在策略构建的初期,一些参数是待定的。如均线的K线条数,止损点位,止盈点位等。这些参数都可以用遍历的方法进行优化,也就是说,穷举各种参数的组合,找到使盈利最大化的那一套参数。

  这里,我们对止盈点位和止损点位进行了优化,绘制了一副3D优化图。X和Y轴分别代表被优化的参数,即止盈点和止损点,Z轴代表目标函数,即盈利。

  我们可以看到,盈利在不同的参数组合情况下高低起伏,呈现出了一个个山峰、平原和低谷。那么,我们是否应该选择那些山峰呢?

  其实不是。因为选择这些山峰可能会带来一个问题,就是过度拟合。表现过好的参数组合满足了过去市场的某种特殊情况,只要参数发生微小变化,策略表现就会急剧下降,这就是”山峰”的含义。

  相比而言,目标函数的“平原”区是更为稳定的参数,因为参数在这个范围内变化,策略表现是稳定的。所以我们要选择平原。

  下面这幅图是参数经过优化后的策略表现,资金曲线图表现出剧烈的波动,这反应了策略思路本身存在缺陷,高低点的突破并不能对价格起到很好的预测作用,参数优化并不能解决策略思路本身的问题。

  如果我们找到了一个可行的策略,又选择了合适的参数,策略回测表现让人满意,下一步就是样本外测试了。

  样本外测试的目的,是用新的数据对策略进行检验,考验策略的盈利能力。在之前的测试中,我们已经使用了一部分的历史数据。

  策略是在这些历史数据中被“训练”出来的,很容易出现过度拟合的问题。极端情况下,只要参数数量足够多,我们是可以轻易的通过历史数据训练出100%胜率的策略。

  但这样的策略并不具有通用性,如果用新的数据测试这样的策略,结果一定是糟糕的。这就是我们进行样本外测试的原因。样本外数据也是历史数据,只是我们在测试初期预留出来的,没有碰过,是“干净”的数据。

  如果策略在新数据下的表现不好,那么这样的策略仅仅是过度拟合的结果。上图就是一个过度拟合的例子,策略盈利在样本外数据中急剧下降。