您当前所在位置: 主页 > 量化交易 > 投资策略解密 >

>量化交易

DE CHUAN FUND

投资策略解密

理工科如何转做金融--量化交易?

发布日期:2017年06月02

  一、什么是量化对冲基金

  量化对冲基金的盈利模式很简单,就是发基金产品,然后提2%管理费(产品总规模的2%)+20%业绩提成(产品收益的20%)。对冲基金的一大特性是杠杆,借入资金,获得杠杆和高收益率,“对冲”是字面的假象,并非是做多空对冲,而是杠杆买卖。

  七亏两平一赚的道理哪里都适用,不管是餐饮行业还是互联网行业,不管是证券私募基金,还是量化对冲基金,包括华尔街的对冲基金行业也一样,大部分都是亏货,最终都倒闭破产了;少量盈亏平衡,做的平庸无奇;屈指可数的极少数功成名就,做大做强,发大财出大名,留下神话般的业绩和伟大的传说,索罗斯西蒙斯这类型,华尔街百年历史也就那么几个,屈指可数,可见这个行业竞争是有多激烈,多残酷,存活率有多低。所以不要总看到量化对冲基金这个行业特别牛,特别高大上,那只是幸存者都看起来很光鲜而已,更多的已经死掉了,你根本而且永远都不会知道。

  不过中国的量化对冲基金行业相比国外,有一个优势,那就是行业刚刚起步,国内做的好的证券私募基金,可能大家勉强还能说出来一两家,国内做得特别好的、特别出名的、规模特别大的、盈利能力特别强的、能傲视群雄、形成寡头垄断的、最顶尖的量化对冲基金,现在还没有。

  二、量化对冲基金的核心岗位---量化交易岗位

  这个岗位到底干啥,简单的说,两个字——赚钱。具体的包括,算法设计、策略测试、参数优化、模型实现、实盘下单等,再深入一些还包括系统维护、策略更新、风险控制、资金管理、品种筛选、极端行情应对等,甚至还需要写宣传资料和推介资料,做一些路演和宣讲。所以一个合格的成熟的量化交易团队(实际中负责投资交易的,很多不是个人而是团队),那就是公司把钱(基金产品)交到你手上,你能在一定限制条件下(一年封闭期,20%止损线等)在市场里赚到钱,而且最好把曲线做的漂亮一些,稳定一些,收益高一些回撤低一些。

  跟量化对冲基金行业一样,量化交易岗位竞争也很激烈,而且更激烈,更残酷,存活率更低。首先

 

  最后对于职业交易者的自我修炼、道德品格、性格塑造、学识见识、心胸视野等有很高的要求。

  量化交易岗位责任极大,压力极大,要运作大量资金,去最血腥最残酷的金融市场里竞争博弈,并且要在非常严格的条件下(比如一年封闭期,20%止损线,甚至还可能有最大回撤的硬性限制要求),战胜同样厉害的竞争对手,去赚取对方亏损的钱,其难度可想而知。 所以,你真的适合做量化交易吗?你真的有能力在这么残酷的竞争中胜出吗?

  别只看到胜出者管理着大量的资金,每天写写代码,说说笑笑,几百万几千万就轻松到手,那是赢者该有的一切。更多的人赔掉了本钱,赔掉了青春,赔掉了自信,赔掉了在其他行业其他岗位上大展宏图的机会,甚至赔掉了美好的生活,但你根本甚至永远都不可能知道他们。

  三、做好量化交易,首先需要兴趣与使命感

  量化交易这个岗位太难了,要求太高,压力太大,一般人很难坚持下去,圈内朋友经常相互开玩笑,做这个工作,寿命都要比正常人短好几年。相信愿意把青春的赌注压在这上面的,都是对于量化交易有着无法抑制的兴趣和冲动。 巴菲特在某大学演讲时,有人问他说我马上要毕业了,如何知道这份工作是否适合我,巴菲特说,如果你每天早上醒来,立马就高高兴兴的、蹦蹦跳跳的、迫不及待的、兴冲冲的跑去办公室开始一天的工作,那这份工作就是你应该一生从事的事业。

  兴趣是最好的导师,有了兴趣才会去钻研,才会不断学习进步,才会拥有一种不断追求完美的精神,用一种工匠精神,用一生的时间和精力去做到最好。

  四、做好量化交易,需要交叉学科、融汇贯通的知识体系

  数学、概率统计、数据结构、算法设计、经济、金融、证券、衍生品相关、投资与分析、主流策略开发语言等,都需要了解,而且要融会贯通。

  关于做量化交易用什么语言更好,其实还是看自己的习惯和要达到的目标,如果是大型金融机构做量化分析系统或量化交易系统,可以用python,R,C++等都可以,各有优劣,看对于速度要求如何了。如果是个人或者中小机构,对于速度要求不高,策略也相对简单,可支出成本有限,而且缺乏的技术支持,用一些成熟的第三方平台,如文华、TB、金字塔、MC等也可以,我还见过用matlab,excel,包括一些网上平台,做量化交易的,其实只要策略能很好的实现,实盘能盈利就行。

  这里讨论一下,有两个观点:

  (1)错误理解:不自己做系统,不自己写接口的都不是量化交易,量化交易门槛特别高,low逼别玩。

  其实不是这样,量化交易只是一种理念,是一种方法,是一种工具,是为交易策略服务的,只要策略开发和下单实现,都是运用的数学模型和计算机程序,而非人为主观判断,就是量化交易。一些股票老玩家,有一个可能盈利的交易策略,然后用第三方平台,搞来历史数据测一测,发现确实能盈利,然后就开始把系统架上去跑,这也是量化交易。就像搭建一个实体模型,比如艾尔菲铁塔什么的,你最好自己制作搭建材料,这样可以更好的更个性化的实现自己的目标,但你也可以去买一些已经做好了的现成的模型材料,用别人做好的材料来搭建模型,两种做法都是搭建模型,核心在于你搭建模型的思路和方法。用第三方平台就像搭积木,人家已经给你把积木做好了,你按照自己的想法把积木搭建起来就是,只是一些特别个性化的搭积木的想法,可能会受到积木本身的限制罢了。

  自己做系统自己写接口的优势在于更加个性化,更符合自己的需求,而且速度更快,信息保密也能做得更好;缺点是财务成本更高,人员和硬件配备要求更高,而且系统更容易出BUG(别说什么大牛,华尔街海龟写的系统就不会有任何问题,还记得光大乌龙指事件吗?)。用第三方平台的优势在于成本低,重大BUG相对较少(不像自己做的系统,第三方平台毕竟几万人用了好几年,而且每天都在不断改进),交易者可以只专注于策略开发,而不用考虑系统维护;缺点是速度更慢,策略思路的实现会受到第三方平台功能的限制等。当然如果做高频交易,肯定得自己做系统写接口了,但现在国内的股票和股指期货市场,是做不了高频交易的。

  (2)错误理解:量化交易的核心竞争力是优秀的计算机语言编程能力。

  其实量化交易的核心竞争力是策略的有效性,能长期稳定盈利的策略是一切的关键,一些中低频交易策略,手动和量化区别不一定会很大。数学、计算机程序、金融、实盘交易经验,做好量化交易,这四样缺一不可,只是因为计算机程序这一块最有特色,是区别于其他交易方法的主要特点,所以总被外界当做量化交易的噱头和宣传点,久而久之大家甚至把编程能力作为最核心竞争力了,这明显有些喧宾夺主。

  五、做好量化交易,需要丰富的交易经验

  从来没做过交易的程序员来写几个程序就想赚钱,不可能。要做好量化交易,长期的实盘交易经验是必须的,这样才能更好的懂得市场的特性,品种的特性,行情的变化等,才能写出更加贴合市场,更加有竞争力的策略和模型。数学思维能力和编程能力很重要,但如果不熟悉市场,不了解品种特性,不了解金融市场百年发展史,不懂得人性的贪婪和恐惧,没自己实盘做过股票期货,很多东西数学模型和程序语言是不会告诉你的,就像你有再好的木匠工具,如果没有做木匠活的经验,你也很难做出漂亮实用的家具。

  有人可能会说那用数据挖掘啊,让程序自己去开发策略,这也是现在一个很有潜力的流派,但问题就在于数据挖掘某种程度上也是依靠概率,没有绝对的必然性,通过数据挖掘做的策略可能会存在巨大风险。就像之前在书上看到的,就是数据挖掘发现,美国标普指数跟非洲某地咖啡产量连续多年相关性达到99%以上,美国原油指数价格跟一种墨西哥烧饼的价格连续多年相关性达到99%以上等等,如果真采用这两组数据的相关性去做策略,很明显是滑稽的。

  其实数据挖掘可能出现的小概率风险,也就是我们常说的参数优化中的参数孤岛。简单的说,就是用历史数据测试策略,发现某个参数表现特别好,但这个参数是独立的,不连续的,跟次优参数差别很大,无法组成一个较优参数集合,这很有可能就是遇到了小概率事件,如果使用这个参数,历史回测可能很漂亮,实盘交易就会遭殃。

  而且只有经过大量的实盘交易,你才会知道赚钱没有那么容易,亏钱却易如反掌,交易这行其实很苦很累,每天在盈利与亏损中挣扎,如何控制风险,获取收益是一个永恒的命题,更别说要做到长期稳定盈利。像巴菲特一样五十年如一日,年均收益20%多,真的就太难了。别去迷信短期暴利,几个月翻几倍之类的神话,毫无意义,资本市场最不缺神话,缺的是寿星,做量化交易就是做资产管理行业,我们是靠规模和复利取胜,而不是冒着巨大风险去博取短期暴利。

  做外部客户委托的资金,无论是单账户还是基金产品,一定要亲自去操作,去实践,才能真正学到东西,成长起来,而且一定要公开化,阳光化,最好网上公布业绩。这样你才会了解到,受人委托,肩上的责任有多大,心理压力有多大,你能否在这样大的压力下,各种严格的限制条件下做好交易,这是真正的难点所在。你才会知道操作自己的资金,跟操作客户的资金,跟操作基金产品的区别有多大。有的人能做好交易工作室,但也仅限于此,做资产管理行业不像做工作室,难度大多了,因为是戴着镣铐,在众目睽睽之下舞蹈,每天都要公布净值的,这谁玩谁知道。

  六、如何创建自己的量化对冲基金管理公司

  过程很复杂,核心是要有起始资金,或者主要投资人,还有核心交易团队,这是最基本条件,然后还有大量的各种各样的工作要做,你要能独挡N面才行,比如你是核心交易团队,那就得会说服投资人投资,找合作渠道发产品,找客户销售产品,注册成立公司,管理公司,公司制度建设,人员招聘,薪酬制定等等。